
Efficient Matryoshka loss calculation

The vanilla sparse autoencoder latents are calculated by

f(x)i = Ax+ b

and the prediction of a vanilla sparse autoencoder with N latents is given by

x̂ = c+

N−1∑
i=0

f(x)idi

The sparsity loss I use for both ‘Vanilla’ and ‘Matryoshka’ is a bit different from L1, but I believe it
is comparable.1 The SAE loss I use is

L(x) = MSE(x, x̂) + λ

N−1∑
i=0

log
(
|f(x)i| · ∥di∥2 + ϵ

)
In practice I use ϵ=0.1 .
Now we’ll build up to the Matryoshka loss. The idea is to train on a mixture on losses, each of which

is the vanilla SAE loss on a prefix of the Matryoshka SAE latents.
Define x̂p for 0 < p ≤ N by

x̂p = c+

p−1∑
i=0

f(x)idi

Then the SAE prefix loss, Lp, is given by

Lp(x) = MSE(x, x̂p) + λ

p−1∑
i=0

log
(
|f(x)i| · ∥di∥2 + ϵ

)
For every batch, we sample P prefixes from a truncated Pareto distribution along with the full-prefix

to get the vector of prefixes pj . See [here] for how prefixes are sampled. With 1000 latents and 3 prefixes,
we might sample pj = [121, 562, 1000] as our prefixes. Assume that the prefix vector pj is sorted from
shortest prefix to longest. Then the Matryoshka loss is defined

L (x) =

P−1∑
j=0

Lpj
(x),

pj ∼ Pareto[N].

A naive calculation of the Matryoshka loss would involve a different SAE forward pass for each prefix.
I avoid this with a faster implementation.

In order to efficiently calculate x̂pj
, recall that

x̂pj
=

pj-1−1∑
k=0

f(x)kdk

Let us label the difference between two adjacent SAE-prefix outputs by δj .

δj
def
=

{
x̂pj

− x̂pj-1
, j > 0

x̂p0
, j = 0

Or equivalently,

1Compare to square-root sparsity penalty[3] and tanh[1][2]. I focused on SAEs with log sparsity penalties as I found
the features slightly more interpretable and it was a Pareto improvement on L0/FVU vs L1 and possibly square root. L1
penalty SAEs seemed to exhibit similar feature splitting as log penalty. I don’t currently believe this affects the generality
of my results, but it seems plausible that log-sparsity SAEs would exhibit more extreme feature absorption.

1

δj =



pj−1∑
k=pj-1

f(x)kdk, j > 0

p0−1∑
k=0

f(x)kdk, j = 0

Note that δj is cheaper to compute than x̂pj
for j > 0 because δj only uses pj − pj-1 latents while x̂pj

uses pj latents. The efficiency trick here is to calculate the δj and then take a cumulative sum to get the
x̂pj

.
A very similar procedure can make the Matryoshka sparsity loss calculation more efficient.
Define

∆j =



pj−1∑
k=pj-1

log
(
|f(x)k| · ∥dk∥2 + ϵ

)
, j > 0

pj−1∑
k=0

log
(
|f(x)k| · ∥dk∥2 + ϵ

)
, j = 0

Then

L (x) =

P−1∑
j=0

Lpj
(x),

=

P−1∑
j=0

(
MSE(x, x̂pj

) + λ

pj−1∑
i=0

log
(
|f(x)i| · ∥di∥2 + ϵ

))
,

=

P−1∑
j=0

(
MSE

(
x,

j−1∑
k=0

δk

)
+ λ

j−1∑
k=0

∆k

)
The algorithm for computing the Matryoshka loss is

� Calculate f(x)i.

� Calculate δi and ∆i using f(x)i and di.

� Take a cumulative sum[https://pytorch.org/docs/stable/generated/torch.cumsum.html] of the δj
to get each x̂j .

� Calculate the MSE using the x̂j

� Take a cumulative sum of the ∆j to get the sparsity loss term in each Lp.

� Add all sparsity and MSE losses to get the final Matryoshka loss.

Code for the above along with the truncated Pareto sampling can be found in [github link].

References

[1] Adam Jermyn et al. Dictionary Learning Update. 2024. url: https://transformer-circuits.
pub/2024/feb-update/index.html#dict-learning-tanh (visited on 11/13/2024).

[2] Jack Lindsey, Hoagy Cunningham, and Tom Conerly. Interpretability Evals for Dictionary Learning.
Ed. by Adly Templeton. 2024. url: https://transformer-circuits.pub/2024/august-update/
index.html#interp-evals (visited on 11/13/2024).

[3] Logan Riggs and Jannik Brinkmann. Improving SAE’s by Sqrt()-ing L1 & Removing Lowest Ac-
tivating Features. Mar. 2024. url: https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/
improving-sae-s-by-sqrt-ing-l1-and-removing-lowest (visited on 11/13/2024).

2

https://transformer-circuits.pub/2024/feb-update/index.html#dict-learning-tanh
https://transformer-circuits.pub/2024/feb-update/index.html#dict-learning-tanh
https://transformer-circuits.pub/2024/august-update/index.html#interp-evals
https://transformer-circuits.pub/2024/august-update/index.html#interp-evals
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest

