
Efficient Matryoshka loss calculation

The vanilla sparse autoencoder latents are calculated by

f(x)i = Ax+ b

and the prediction of a vanilla sparse autoencoder with N latents is given by

x̂ = c+

N−1∑
i=0

f(x)idi

The sparsity loss I use for both ‘Vanilla’ and ‘Matryoshka’ is a bit different from L1, but I believe it
is comparable.1 The SAE loss I use is

L(x) = MSE(x, x̂) + λ

N−1∑
i=0

log
(
|f(x)i| · ∥di∥2 + ϵ

)
In practice I use ϵ=0.1 . The log sparsity loss isn’t necessary for Matryoshka SAEs, and L1 could be

used in its place.
Now we’ll build up to the Matryoshka loss. The idea is to train on a mixture on losses, each of which

is the vanilla SAE loss on a prefix of the Matryoshka SAE latents.
Define x̂p for 0 < p ≤ N by

x̂p = c+

p−1∑
i=0

f(x)idi

Then the SAE prefix loss, Lp, is given by

Lp(x) = MSE(x, x̂p) + λ

p−1∑
i=0

log
(
|f(x)i| · ∥di∥2 + ϵ

)
For every batch, we sample P prefixes from a truncated Pareto distribution along with the full-prefix

to get the vector of prefixes pj . See here for prefix sampling code. With 1000 latents and 3 prefixes,
we might sample pj = [121, 562, 1000] as our prefixes. Assume that the prefix vector pj is sorted from
shortest prefix to longest. Then the Matryoshka loss is defined

L (x) =

P−1∑
j=0

Lpj
(x),

pj ∼ Pareto[N].

A naive calculation of the Matryoshka loss would involve a different SAE forward pass for each prefix.
I avoid this with a faster implementation.

In order to efficiently calculate x̂pj
, recall that

x̂pj
=

pj-1−1∑
k=0

f(x)kdk

Let us label the difference between two adjacent SAE-prefix outputs by δj .

δj
def
=

{
x̂pj

− x̂pj-1
, j > 0

x̂p0
, j = 0

Or equivalently,

1Compare to square-root sparsity penalty[3] and tanh[1][2]. I focused on SAEs with log sparsity penalties as I found
the features slightly more interpretable and it was a Pareto improvement on L0/FVU vs L1 and possibly square root. L1
penalty SAEs seemed to exhibit similar feature splitting as log penalty. I don’t currently believe this affects the generality
of my results, but it seems plausible that log-sparsity SAEs would exhibit more extreme feature absorption.

1

https://github.com/noanabeshima/matryoshka-saes/blob/main/sae.py#L30C12-L58C16

δj =



pj−1∑
k=pj-1

f(x)kdk, j > 0

p0−1∑
k=0

f(x)kdk, j = 0

Note that δj is cheaper to compute than x̂pj
for j > 0 because δj only uses pj − pj-1 latents while x̂pj

uses pj latents. The efficiency trick here is to calculate the δj and then take a cumulative sum to get the
x̂pj

.
A very similar procedure can make the Matryoshka sparsity loss calculation more efficient.
Define

∆j =



pj−1∑
k=pj-1

log
(
|f(x)k| · ∥dk∥2 + ϵ

)
, j > 0

pj−1∑
k=0

log
(
|f(x)k| · ∥dk∥2 + ϵ

)
, j = 0

Then

L (x) =

P−1∑
j=0

Lpj
(x),

=

P−1∑
j=0

(
MSE(x, x̂pj

) + λ

pj−1∑
i=0

log
(
|f(x)i| · ∥di∥2 + ϵ

))
,

=

P−1∑
j=0

(
MSE

(
x,

j−1∑
k=0

δk

)
+ λ

j−1∑
k=0

∆k

)
The algorithm for computing the Matryoshka loss is

� Calculate f(x)i.

� Calculate δi and ∆i using f(x)i and di.

� Take a cumulative sum of the δj to get each x̂j .

� Calculate the MSE using the x̂j

� Take a cumulative sum of the ∆j to get the sparsity loss term in each Lp.

� Add all sparsity and MSE losses to get the final Matryoshka loss.

Code for the above along with the truncated Pareto sampling can be found in the GitHub repo2.

References

[1] Adam Jermyn et al. Dictionary Learning Update. Transformer Circuits. 2024. url: https : / /

transformer-circuits.pub/2024/feb-update/index.html%5C#dict-learning-tanh.

[2] Jack Lindsey, Hoagy Cunningham, and Tom Conerly. Interpretability Evals for Dictionary Learning.
Ed. by Adly Templeton. Transformer Circuits. 2024. url: https://transformer-circuits.pub/
2024/august-update/index.html%5C#interp-evals.

[3] Logan Riggs and Jannik Brinkmann. Improving SAE’s by Sqrt()-ing L1 & Removing Lowest Ac-
tivating Features. AI Alignment Forum. Mar. 2024. url: https://www.lesswrong.com/posts/
YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest.

2https://github.com/noanabeshima/matryoshka-saes

2

https://pytorch.org/docs/stable/generated/torch.cumsum.html
https://github.com/noanabeshima/matryoshka-saes/blob/main/sae.py#L30-L74
https://transformer-circuits.pub/2024/feb-update/index.html%5C#dict-learning-tanh
https://transformer-circuits.pub/2024/feb-update/index.html%5C#dict-learning-tanh
https://transformer-circuits.pub/2024/august-update/index.html%5C#interp-evals
https://transformer-circuits.pub/2024/august-update/index.html%5C#interp-evals
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://github.com/noanabeshima/matryoshka-saes

